

Bulk Material Flowability Testing — What Is It And Why Does It Matter?

Carrie Hartford, P.E, MBA

chartford@Jenike.com

Tracy Holmes, P. Eng

tracyh@Jenike.com

OUTLINE

- Who is J&J?
- Common flow problems
- Flowability tests- what are they?
- So what?

WHO IS J&J?

A specialized engineering firm focused on providing clients solutions to material handling applications

- 55+ years experience, all industries
- 13,000+ materials tested, 7,500+ projects
- 650+ accumulated years of solids experience
- Offices in Australia, Brazil, Canada, Chile, Boston, Houston, California

JENIKE & JOHANSON – Our Approach Scientific approach – based on your materials <u>Not a trial and error approach</u>

On-site Assessments & Inspections

Testing & Physical Modeling

Technology, Computer Simulations

Conceptual Engineering → Detailed Design

COMMON FLOW PROBLEMS

Stockpile ratholes

Limited live capacity

"FLOWABILITY"

<u>Flowability</u> is a function of the material AND the equipment

"Poor flowing" material can be handled easily in properly designed equipment

"Easy flowing" material can present flow problems in poorly designed equipment

FUNNEL FLOW

- Issues
 - Some material is stagnant
 - Caking, product degradation, spoilage
 - Arching, ratholing, and erratic flow can occur
 - Limited live capacity
 - Varying bulk density

Features

- Low headroom
- First-in, last-out
- Ratholes may develop
- Fine powders will flood
- Sifting segregation issues exacerbated

Features

- Smooth, steep hopper
- First-in, first-out
- Ratholes cannot form
- Fine powders deaerate
- Sifting segregation minimized
- Uniform feed
 Suitable for
- Cohesive materials
- Fine powders
- Degradable material
- Materials that segregate by sifting

MASS FLOW

Required for material that is:

- Cohesive
- Fine
- Degrades over time
- Sifting segregation is a concern

Achieving mass flow requires:

- Flow along hopper walls,
- Outlet large enough to prevent arching
- Correct feeder design

STOCKPILES: Expanded Flow Analogy

 $\theta_{\rm D}$ = Drawdown angle $\theta_{\rm R}$ = Angle of repose θ_{D} θ **Funnel flow** Mass flow

WHAT ABOUT ANGLE OF REPOSE?

- How to measure?
- How to utilize data?

BULK MATERIAL TESTING

Standard tests:

- ► Cohesive strength
- ► Wall friction
- Bulk density/compressibility
- ► Particle density
- ► Permeability
- Segregation potential
- ► Particle size distribution

250 inch screen

5 inch screen

BULK MATERIAL TESTING

Other common tests:

- Angle of repose (AOR) / Drawdown angle
- Belt surcharge angle
- Particle density
- Fluidization
- Pneumatic conveying
- Maximum belt inclination angle
- Transport Moisture Limit (TML)
- Dust Extinction Moisture (DEM)
- Wear testing

Iron Ore AOR and Belt Surcharge Angle

FLOWABILITIY TESTING: Cohesive Strength

JENIKE.

FLOWABILITIY TESTING: Wall Friction

Note: There is no magic angle!

Recommended Mass Flow Hopper Wall Angle

⁴Jenike, A.W., Storage and Flow of Solids, Bulletin 123, University of Utah Engineering Station, 1964 (revised, 1976).

WHAT AFFECTS FLOWABILITY?

- Particle size and distribution
- Particle shape
- Aspect ratio
- Moisture
- Time at rest
- Temperature
- Relative humidity
- Chemical composition

Bauxite @ 22% mc

Bauxite @ 18% mc

It's critical to match your process conditions!

How Material Changes with Moisture Content

<u>Note:</u> Wall friction should be measured at all operating conditions as the friction of the material is independent of cohesive strength i.e. dry ore could have higher friction than wet ore.

SO WHAT?

ARE YOU IN THE BUSINESS OF MINING?

OR THE BUSINESS OF FLOW?

CONCLUSION

Flowability testing is key in providing inputs to the design basis

Testing must be performed on representative samples and at anticipated process conditions

Without flowability test data, it is a guessing game → increases project risk

The science has been around for over 60 years – tried and true

Bulk Material Flowability Testing — What Is It And Why Does It Matter?

Carrie Hartford, P.E, MBA

chartford@Jenike.com

Tracy Holmes, P. Eng

tracyh@Jenike.com