Gearless Conveyor Drives – A Step Towards Greater Sustainability and Carbon Footprint Reduction

Current Situation and Challenges – Gearless Drive Systems are part of the answer

Classic Challenges

- Deeper mines, decreasing ore grades
- Mines located at remote areas
- Highest Efficiency
- Health & Safety

"Latest" Challenges

- Public Attention, Industry in Focus of Discussions
- Reduction of CO₂ emissions
- Sustainability

Siemens Large Drives 2 | February 2022

• Strongly Increasing Demand of Resources

Current Situation and Challenges – Gearless Drive Systems are part of the answer

- Serving the requirement of larger and longer conveying systems
- Complying with highest power requirements
- Matching manufacturer's abilities to produce stronger belts
- Increasing efficiency
- Reducing environmental impact

Gearless Drive Systems for Conveyors

Comparison with Other Drive Configurations

Example: Drive Station with Four Drives

Drive System Configuration

- 4 x Motor High Speed
- 4 x VFD
- 4 x Gearbox
- 4 x Feeder MV-SWG

- 2 x Motor Low Speed
- 2 x VFD / CYCLO
- 2 x Feeder MV-SWG

Gearless Conveyor Drive Projects

References

SIEMENS

Example: Antappacay – Drive Station with Four Drives 1900kW Impact on E-House Footprint

E-house Conventional Design	E-house Gearless Drive Design			
(red color, 5,8 m x 45 m)	(white color, 4,3 m x 25 m)			
E- house dimensions conventional design	E-house dimensions gearless drive design			
(5,8 m x 45 m = 261 m²)	(4,3 m x 25 m = 107,5 m²)			
 4 x 1900 kW Motor / 1200 rpm 4 x 1900 kW VFD 4 x Gearbox 4 x Feeder MV-SWG for Drive 	 2 x 3800 kW motor / 63 rpm 2 x 3800 kW Cyclo-Converter 2 x Feeder MV-SWG for Drive 			

Example: Escondida OGP1

10km Overland Conveyor System with 4 Flights (1x2x 5MW & 3x1x 5MW gearless drives)

February 27 - March 2, 2022 | Salt Lake City, Utah

Siemens Large Drives | February 2022

- First time single gearless drive on conveyor flight •
- Case study between 10 x 2500kW (conventional) vs 5x 5000kW (gearless)
- Case study between motor with bearing and without bearing

5,000 kW // Weight: 97 t

Example: Escondida OGP1

5 Gearless Drives vs. 10 Conventional Drives (2,500 kW), 25,000kW Installed Power – Efficiency Comparison

	Conventional Drive System w/ Reducer		Gearless Drive Station w/o Reducer	
	Induction Motor & VFD		Separate Excited Synchronous Motor & Cyclo-Converter	
Installed Power	4 x 2,500kW		2 x 5,000kW	
Equipment	Efficiency [%]	Losses [kW]	Efficiency [%]	Losses [kW]
Converter Transformer	99.3	70	99.2	140
Excitation Transformer & Rectifier	n,	/a	(97.6)	16
Converter	97.3	270	99.2	100
Gearbox & Oil System	96.0	400	n/a	n/a
Motor	96.5	350	95.6	440
Motor Cooling System	n,	/a		
Total	89.1	1090	93.0	696.0

Example: Escondida OGP1

5 Gearless Drives vs. 10 Conventional Drives (2,500 kW), 25,000kW Installed Power – Savings and Reductions

Availability

 \Rightarrow Reduced loss of production

$$\Rightarrow$$
 savings[USD/a] = $\frac{loss[USD]}{h} * \frac{down time[h]}{a}$

Efficiency

 \Rightarrow 3.9% higher efficiency

- \Rightarrow savings[kWh] = eff. increase[%] * total power demand[kW] * operating time per year[h]
- ⇒ E.g., ≈6,800,000 kWh ≈2,770 ⁽¹⁾ tons in CO₂ reduction / year \approx 1,108,000l crude oil

Reliability Calculation (4 x 2500 kW reducers)

			Assumed max. Rel.	99.99%	Operating time [h/a]	7000
		Bearing	Couplings	Reliability [%]	Risk [%]	Down Time [h/a]
Conventional	IM	44	8	99.48	0.52	36
Gearless	SM	4	0	99.96	0.04	3

Maintenance

Savings in reducer maintenance work: no oil storage and handling, no workforce, etc.

SIEMENS

Customized Cooling System: Antapaccay and Las Bambas Overland Conveyor Systems 2 Projects, Same Frame Size Motor, Two Different Power Ratings

	Antapaccay	Las Bambas
Installed Power	2 x 3.8MW	2 x 4.4MW
Cooling Unit Type	Dry Cooler	Chiller
Forerun Temperature[°C]	32	20

Siemens Large Drives 11 | February 2022

Customized Cooling System: Cuajone Overland Conveyor System Elimination of HVAC Units from E-House Cooling

- E-house Cooling by Air / Water Heat Exchanger
- Air / Water heat exchanger ties into closed loop circuit of motor cooling system (dry cooler)

- Simplified Cooling Concept
 - No Compressors •
 - **Robust System**

Society for Mining, Metallurgy & Exploration

Gearless Drive Systems: A Flexible Solution for Most Requirements

(1)

5)

Reducing Footprint, Even for Transportation

- The motor is delivered in parts Ο
- Heaviest part to lift is the stator Ο
- The parts are smaller than the assembled Ο motor, which is an advantage for transport, especially through tunnels, e.g., at Oyu Tolgoi the motor had to fit in a mine hoist cage
- Still, the motor is easy to assemble 0

Gearless Drive Systems: A Flexible Solution for Most Requirements

Reducing Footprint, Even for Transportation

- The E-House can be designed with splits
- Number and size of the modules is flexible
- Easy installation by use of ISO-corners to bolt the modules together, no welding required
- E.g., at Oyu Tolgoi the modules have been transported in the cage of the mine hoist, as well

SIEMENS

Gearless Drive Systems: A Flexible Solution for Most Requirements High Overload Capability

- **One-Drive-Out Scenario:** \bigcirc
 - Emptying the belt with one out of two drives, overload factors realized up to 190% (Las Bambas, Antapaccay), Oyu Tolgoi: 170%, up to 5.5min
- Braking scenarios for downhill conveyors: 0 Julong: 170% for 70s
- Maximum overload factor ≈2,7 without 0 mechanical design changes

Gearless Drive Systems: The Next Step

Permanent Magnet Motors

- Same basic concept as Gearless Drive with Separate Excited Synchronous Motor, but motor always with proprietary bearings
- Higher motor efficiency by not requiring external excitation
- Very interesting option in the range of 800-1000kW
- For higher ratings e.g., 2000kW PMM is approx. 30% more expensive

Wrap Up: Gearless Drive Systems for Conveyors Sustainability is part of the solution, by

- providing a flexible system which can be adapted to most requirements
- having a smaller footprint and a simplified layout / configuration
- increasing efficiency and availability
 → reduction of maintenance efforts
 → reduction of emissions
- eliminating vibrations, reducing noise and the necessity of handling reducer oil
 → reduction of direct environmental impact
- Containing fewer pieces of equipment and needing fewer spare parts
 - \rightarrow less production and storage of parts

Thank you for your participation!

Christoph Voelkel

Global Sales Manager Conveyor Drive Systems Cell phone: +49 172 3240377 christoph.voelkel@siemens.com

www.siemens.com/lda

www.siemens.com/mining

