

Reliability-Based Capacity Determination Model for Semi-Mobile In-Pit Crushing & Conveying Systems

Bulk Material Handling: New Technology in BMH

Dr. Robert Ritter | 20.02.2017

- Mine Planning Context
- Main Process: Material Transport
- Predominate → TRUCKS
- Overall Operational Cost Increase
- Material Transport Cost Increase

In-Pit Crushing and Conveying System

Loading	Intermitted Truck Haulage	Crushing	Conveying	Discharge		
Discontinuous Part		Continuous Part				

- IPCC Systems not a Novelty
- Some failed to live up to
 - Capacity &
 - Cost Expectations
- Unsuitable Methods neglect
 - Variance
 - Disturbances

o	bjective		
			Develop a structured
Loa	Ohiective	Crushing	method to estimate SMIPCC systems ^{scharge} ── < capacityder ────
	Objective		consideration of the random behaviour of
2017 SME Annual Confe	rence and Expo, 20th February 2017, Denver		system elements

- Fluctuation of operational process time
- Random variables
- Described by PDF
- Statistic Analysis based on
 - Time studies
 - Data sets

Random Behaviour of System Elements - Results

Hourly Loader Capacity C_L

Doctoral Thesis Defence by Robert Ritter, 1st November 2016, Freiberg

Hourly Loader Capacity - C_L

Deterministic Approach

$$\overline{N} = \frac{\overline{c}_{T_{max}}}{\overline{c}_L} = \frac{165t}{50t} \approx 3$$

$$\overline{c}_T = \overline{N} \cdot \overline{c}_L = 3 \cdot 50t = 150t$$

$$\bar{\boldsymbol{t}}_{\boldsymbol{L}\boldsymbol{o}} = \bar{N} \cdot \bar{\boldsymbol{t}}_{\boldsymbol{L}} = 3 \cdot 25s = \boldsymbol{75s}$$

- Bucket Payload $\bar{c}_T = 50t$
- Bucket Cycle Time $\bar{t}_L = 25s$
- Maximum Payload of Truck $c_{Tmax} = 165t$

Hourly Loader Capacity - C_L

Time Usage Model

- Structures time quantities
- Establishes logical relations

 $t_{O_e} = \frac{t_c - t_{Dp}^{(1)} - t_{Dp}^{(2)} - t_{Dp}^{(3)} - t_{Dp}^{(4)} - t_{Dp}^{(5)''}}{(1 + \nu + \zeta + \tau) + (1 + \nu + \zeta)\varkappa}$

Simulation Model for $\boldsymbol{\zeta}$

- Stochastic simulation model
- Written in VBA

45 40

9 10

11 12 13 14 15

Results

- $C_S \uparrow \text{as } n_T \uparrow$
- **Diminishing marginal** returns
- Limit at 41.5 Mt
- $\zeta_L \downarrow \text{ as } n_T \uparrow$
- ζ_T \uparrow as n_T \uparrow

2017 SME Annual Conference and Expo, 20th February 2017, Denver

Various truck quantities

Analysis 2 Economic analysis

Analysis 3 Sensitivity analysis

Analysis 4 Stockpile

Analysis 5 Comparison

At about 37Mt/a

Case Study - Analyses

Analysis 2 Economic analysis

Analysis 3 Sensitivity analysis

Analysis 4 Stockpile

Analysis 5 Comparison

Results

- $C_S \uparrow$ as $C_{Stock} \uparrow$
- *C_S* ↑ by 5Mt
 @18,000t
- Diminishing marginal returns
- Cost reduction to base case -4.6c/t

- 1. Quantification of disturbance parameters
- 2. Development of a stochastic hourly loader capacity method
- 3. Structured Time Usage Model specific to IPCC
- 4. Stochastic simulation model for system delay ratio
- 5. Descriptive conclusions to lay out new SMIPCC systems

Clermont Coal Mine

Doctoral Thesis Defence by Robert Ritter, 1st November 2016, Freiberg

Transitions:
Start of operation: 2010
1. FMIPCC to SMIPCC (inpit) – right after start
2. SMIPCC (inpit) to SMIPCC (expit) – Mar.2012
3. Stop of operation – Oct. 2015

Clermont Operating Delay – System Induced Operating Delay

Clermont Coal Mine

Doctoral Thesis Defence by Robert Ritter, 1st November 2016, Freiberg

Literature Review & Site Data Analysis

- **1. Work Time Distribution**
- 2. Alteration of Truck Allocation
- 3. Preventative Maintenance for Trucks
- 4. Trucks in Reserve
- 5. Increasing Truck Travel Times

10/10/20 Truck Loading Policy

"No more than 10% of payloads may exceed 1.1 times the target payload and no single payload shall ever exceed 1.2 times the target payload "

Random Disturbance Behaviour of System Elements

Equipment type	Mean Repair Time [min]	Mean Work Time [min]	Repair Ratio	
Loader				
cable shovel	132.7	790	0.17	
hydraulic excavator	288.1	1,991	0.157	
Trucks	296.7	963	0.128	
Crusher	33.1	458	0.117	
Spreader	52.1	1,147	0.059	
Conveyor				
shiftable	32.7	2,162	0.019	
relocatable	31.8	5,834	0.012	
fix	21	20,780	0.007	

Simulation Model

- Goal \rightarrow system delay ratio ζ
- VBA in Excel
- Simulation Model Description
 - Initialization
 - Disturbance Check
 - Truck Loop
 - Loader Queue Procedure
 - Loading Procedure
 - Travel Procedure
 - Crusher Queue Procedure
 - Truck Discharge Procedure

Number of Bucket Cycles - Formular

$$p_n = P(N = n) = P(c_T^{(n)} \le c_{T_{max}} \le c_T^{(n+1)})$$
$$= P(c_T^{(n)} \le c_{T_{max}}) - P(c_T^{(n+1)} \le c_{T_{max}})$$

$$= P\left(\frac{c_{T}^{(n)} - n\mu_{c_{L}}}{\sqrt{n}\sigma_{c_{L}}} \le \frac{c_{T_{max}} - n\mu_{c_{L}}}{\sqrt{n}\sigma_{c_{L}}}\right) - P\left(\frac{c_{T}^{(n+1)} - (n+1)\mu_{c_{L}}}{\sqrt{n+1}\sigma_{c_{L}}} \le \frac{c_{T_{max}} - (n+1)\mu_{c_{L}}}{\sqrt{n+1}\sigma_{c_{L}}}\right)$$
$$= \Phi\left(\frac{c_{T_{max}} - n\mu_{c_{L}}}{\sqrt{n}\sigma_{c_{L}}}\right) - \Phi\left(\frac{c_{T_{max}} - (n+1)\mu_{c_{L}}}{\sqrt{n+1}\sigma_{c_{L}}}\right)$$

38

Truck Payload – Equations I

Based on the above it is now possible to describe the distribution function $F_{c_T}(x)$ of the truck payload. It is clear that $c_L \le x \le c_{T_{max}}$. $F_{c_T}(x)$ can be expressed as

Where $F_{C_T|N=n}(x)$ is the distribution function $F_{c_T}(x)$ under the condition that *n* passes are handled and under the consideration of the truck payload policy.

Using

$$F_{c_T|N=n}(x) = P\left(c_T^{(n)} \le x \middle| N = n\right) = \frac{P(c_T^{(n)} \le x, N = n)}{p_n}$$
$$= \frac{P(c_T^{(n)} \le x, c_T^{(n)} \le c_{T_{max}} < c_T^{(n+1)})}{p_n}$$
$$= \frac{P(c_T^{(n)} \le x, c_{T_{max}} < c_T^{(n+1)})}{p_n}$$

39

Truck Payload – Equations II

It can be seen that

$$F_{c_T}(x) = \sum_{n=1}^{\infty} P(c_T^{(n)} \le x, c_{T_{max}} < c_T^{(n+1)})$$

$$=\sum_{n=1}^{\infty}\int_{-\infty}^{x}\int_{c_{T_{max}}-x}^{\infty}\varphi(x;n\mu_{c_{L}},n\sigma_{c_{L}}^{2})\varphi(y;n\mu_{c_{L}},\sigma_{c_{L}}^{2})dxdy$$

$$=\sum_{n=1}^{\infty}\int_{-\infty}^{x}\varphi(x;n\mu_{c_{L}},n\sigma_{c_{L}}^{2})\left(1-\Phi\left(\frac{c_{T_{max}}-x-\mu_{c_{L}}}{\sigma_{c_{L}}}\right)\right)dx.$$

Truck Payload – Equations III

Practically, the sum of c_i only extends over a few n (usually between 2 and 7 bucket cycles). In particular, for a sufficiently large $c_{T_{max}}$. Therefore, the probability density function of c_T can be derived as the following holds

$$f_{c_T}(x) = \left[\sum_{n=1}^{\infty} \varphi(x; n\mu_{c_L}, \sigma_{c_L}^2)\right] \left(1 - \Phi\left(\frac{c_{T_{max}} - x - \mu_{c_L}}{\sigma_{c_L}}\right)\right).$$

Thus the mean and variance of C_T can be written as

$$\bar{c}_T = \int_0^{c_{T_{max}}} x \sum_{n=1}^\infty \varphi(x; n\mu_{c_L}, \sigma_{c_L}^2 \left(1 - \Phi\left(\frac{c_{T_{max}} - x - \mu_{c_L}}{\sigma_{c_L}}\right) \right) dx$$

$$\sigma_{C_T}^2 = \int_0^{c_{T_{max}}} (x - \bar{c}_T)^2 \sum_{n=1}^\infty \varphi(x; n\mu_{c_L}, \sigma_{c_L}^2 \left(1 - \Phi\left(\frac{c_{T_{max}} - x - \mu_{c_L}}{\sigma_{c_L}}\right) \right) dx \, .$$

octoral Thesis Defence by Robert Ritter, 1st November 2016, Freiberg

Crusher Type Overview

42

Crusher Type Overview

Crusher		Jaw	Gyratory	Roll Crusher	Impact	Feeder Breaker	Sizer	Hybrid
Year introduced		1858	1883	1910	1920	1960	1979	2005
Mechanical reduction method		compression	compression	compression, impact & shear (for single roll)	impact, attrition, shear	compression, impact, shear	shear, compression	compression
Moisture content [%]		<5	<5	>20	<10	>20	<20	>20
Application for high clay materials		poor - fair	poor	good	poor	fair	excellent	very good
Abrasiveness		high	high	low	not applicable	low	low - medium	low - medium
Fine generation		low-medium	low-medium	low	high	low-medium	low	low
Max, capacity [t/h]		1250	10940	14000	4500	6000	12500	12000
Material compressive strength [MPa]		450	600	150	115	50	200	300
Max, feed size [mm]		1500	1830	1600	3000	1500	2000	2500
Reduction ratio		1:4 - 1:9	1:3 - 1:8	1:5 - 1:10	1:10 - 1:50	1:2 - 1:4	1:2 - 1:4	1:4 - 1:6
Design variations		single/double toggle	Gyratory, Jaw- type gyratory	Single/double roll	Horizontal/ve rtical and single/double shaft		single/double roll, side/centre	
Max. Dimensions	height	5400	10800	3500	8100	2000	1800	2000
[mm]	length	5200	6450	9700	5500	6500	10100	9300
	width	4200	6250	8200	5700	4500	4050	7000
Max. Weight [t]		115	530	230	190	50	190	102
Max. Installed power		400	1200	2000	2800	300	1200	2500

Schematic

43

Crusher Type Properties

Change of Crusher Types over Decades

45

Feed System

Range

Background – Challenges

- Material transport as the main process in mining
- Today's predominate mean of material transport TRUCKS
- However...

Mining Truck Evolution

Source: SNL Metals and Mining's Strategies for Gold Reserve Replacement

After Bozorgebrahimi, 2004

Doctoral Thesis Defence by Robert Ritter, 1st November 2016, Freiberg

Increase of Mineralisation Depth

Randolph, 2011

Doctoral Thesis Defence by Robert Ritter, 1st November 2016, Freiberg

Increasing Stripping Ratios

Mudd, 2009

Doctoral Thesis Defence by Robert Ritter, 1st November 2016, Freiberg

Declining Ore Grades

Increasing Labour Cost

Source: Australian Bureau of Statistics, 2012

Single Side Loading

Figure 4-8 Single-side method (left) and double-side method (right)

Figure 4-9 Drive-by method (left) and modified drive-by method (right)

Doctoral Thesis Defence by Robert Ritter, 1st November 2016, Freiberg

Recommendation for further Research

- 1. Incorporation of the aspects highlighted in the critical discussion
- 2. Extension of method for heterogeneous truck fleet
- 3. Extension of method for entire IPCC range
- 4. Inclusion of multiple periods and Investment cost